NAG Fortran Library

Routine Index

This document lists all the routines in the Fortran Library in order of functionality.

A02 – Complex Arithmetic

Complex numbers,    
    division    A02ACF
    modulus    A02ABF
    square root    A02AAF

C02 – Zeros of Polynomials

All zeros of cubic:    
    complex coefficients    C02AMF
    real coefficients    C02AKF
All zeros of polynomial:    
    complex coefficients,    
        modified Laguerre method    C02AFF
    real coefficients,    
        modified Laguerre method    C02AGF
All zeros of quadratic:    
    complex coefficients    C02AHF
    real coefficients    C02AJF
All zeros of quartic:    
    complex coefficients    C02ANF
    real coefficients    C02ALF

C05 – Roots of One or More Transcendental Equations

Zeros of functions of one variable:    
    Direct communication:    
        binary search followed by Bus and Dekker algorithm    C05AGF
        Bus and Dekker algorithm    C05ADF
        continuation method    C05AJF
    Reverse communication:    
        binary search    C05AVF
        Bus and Dekker algorithm    C05AZF
        continuation method    C05AXF
Zeros of functions of several variables:    
    Checking Routine:    
        Checks user-supplied Jacobian    C05ZAF
    Direct communication:    
        easy-to-use,    
            derivatives required    C05PBF
            no derivatives required    C05NBF
        sophisticated    C05NCF
        sophisticated, derivatives required    C05PCF
    Reverse Communication:    
        sophisticated    C05NDF
        sophisticated,    
            derivatives required    C05PDF/C05PDA

C06 – Summation of Series

Acceleration of convergence    C06BAF
Complex conjugate,    
    complex sequence    C06GCF
    Hermitian sequence    C06GBF
    multiple Hermitian sequences    C06GQF
Complex sequence from Hermitian sequences    C06GSF
Convolution or Correlation,    
    complex vectors,    
        time-saving    C06PKF
    real vectors,    
        space-saving    C06EKF
        time-saving    C06FKF
Discrete Fourier Transform,    
    half- and quarter-wave transforms,    
        multiple Fourier cosine transforms    C06HBF
        multiple Fourier cosine transforms,    
            simple use    C06RBF
        multiple Fourier sine transforms    C06HAF
        multiple Fourier sine transforms,    
            simple use    C06RAF
        multiple quarter-wave cosine transforms    C06HDF
        multiple quarter-wave cosine transforms,    
            simple use    C06RDF
        multiple quarter-wave sine transforms    C06HCF
        multiple quarter-wave sine transforms,    
            simple use    C06RCF
    multi-dimensional,    
        complex sequence,    
            complex storage    C06PJF
            real storage    C06FJF
    one-dimensional,    
        multi-variable,    
            complex sequence,    
                complex storage    C06PFF
                real storage    C06FFF
        multiple transforms,    
            complex sequence,    
                complex storage by columns    C06PSF
                complex storage by rows    C06PRF
                real storage by rows    C06FRF
            Hermitian sequence,    
                real storage by rows    C06FQF
            Hermitian/real sequence,    
                complex storage by columns    C06PQF
                complex storage by rows    C06PPF
            real sequence,    
                real storage by rows    C06FPF
        single transforms,    
            complex sequence,    
                space saving,    
                    real storage    C06ECF
                time-saving,    
                    complex storage    C06PCF
                    real storage    C06FCF
            Hermitian sequence,    
                space-saving,    
                    real storage    C06EBF
                time-saving,    
                    real storage    C06FBF
            Hermitian/real sequence,    
                time-saving,    
                    complex storage    C06PAF
            real sequence,    
                space-saving,    
                    real storage    C06EAF
                time-saving,    
                    real storage    C06FAF
    three-dimensional,    
        complex sequence,    
            complex storage    C06PXF
            real storage    C06FXF
    two-dimensional,    
        complex sequence,    
            complex storage    C06PUF
            real storage    C06FUF
Inverse Laplace Transform,    
    Crump's method    C06LAF
    Weeks' method,    
        compute coefficients of solution    C06LBF
        evaluate solution    C06LCF
Summation of Chebyshev series    C06DBF

D01 – Quadrature

Korobov optimal coefficients for use in D01GCF and D01GDF:    
    when number of points is a product of 2 primes    D01GZF
    when number of points is prime    D01GYF
Multi-dimensional quadrature:    
    over a general product region:    
        Korobov–Conroy number-theoretic method    D01GCF
        Sag–Szekeres method (also over n -sphere    D01FDF
        variant of D01GCF especially efficient on vector machines    D01GDF
    over a hyper-rectangle:    
        adaptive method    D01FCF
        adaptive method,    
            multiple integrands    D01EAF
        Gaussian quadrature rule-evaluation    D01FBF
        Monte Carlo method    D01GBF
    over an n -simplex    D01PAF
    over an n -sphere (n4) ,    
        allowing for badly behaved integrands    D01JAF
One-dimensional quadrature:    
    adaptive integration of a function over a finite interval:    
        allowing for singularities at user-specified break-points    D01ALF
        method suitable for oscillating functions    D01AKF
        strategy due to Patterson,    
            suitable for well-behaved integrands    D01AHF
        strategy due to Piessens and de Doncker,    
            allowing for badly behaved integrands    D01AJF
        variant of D01AJF especially efficient on vector machines    D01ATF
        variant of D01AKF especially efficient on vector machines    D01AUF
        weight function 1 / (x-c)  Cauchy principal value (Hilbert transform)    D01AQF
        weight function with end-point singularities of algebraico-logarithmic type    D01APF
        weight function cos(ωx)  or sin(ωx)      D01ANF
    adaptive integration of a function over an infinite interval or semi-infinite interval    D01AMF
    adaptive integration of a function over an infinite interval or semi-infinite interval:    
        weight function cos(ωx)  or sin(ωx)      D01ASF
    Gaussian quadrature rule-evaluation    D01BAF
    integration of a function defined by data values only,    
        Gill–Miller method    D01GAF
    non-adaptive integration over a finite interval    D01BDF
    non-adaptive integration over a finite interval:    
        with provision for indefinite integrals also    D01ARF
Two-dimensional quadrature over a finite region    D01DAF
Weights and abscissae for Gaussian qadrature rules:    
    more general choice of rule,    
        calculating the weights and abscissae    D01BCF
    restricted choice of rule,    
        using pre-computed weights and abscissae    D01BBF

D02 – Ordinary Differential Equations

Second-order Sturm–Liouville problems:    
    regular system, finite range, user-specified break-points:    
        eigenvalue only    D02KAF
    regular/singular system, finite/infinite range:    
        eigenvalue and eigenfunction    D02KEF
        eigenvalue only    D02KDF
System of first-order ordinary differential equations, initial value problems:    
     C 1 -interpolant    D02XKF
    comprehensive integrator routines for stiff systems:    
        explicit ODEs (reverse communication):    
            full Jacobian    D02NMF
        explicit ODEs:    
            banded Jacobian    D02NCF
            full Jacobian    D02NBF
            sparse Jacobian    D02NDF
        implicit ODEs coupled with algebraic equations (reverse communication)    D02NNF
        implicit ODEs coupled with algebraic equations:    
            banded Jacobian    D02NHF
            full Jacobian    D02NGF
            sparse Jacobian    D02NJF
    comprehensive integrator routines using Adams method with root-finding option:    
        diagnostic routine    D02QXF
        diagnostic routine for root-finding    D02QYF
        forward communication    D02QFF
        interpolant    D02QZF
        reverse communication    D02QGF
        set-up routine    D02QWF
    comprehensive integrator routines using Runge–Kutta methods:    
        diagnostic routine    D02PYF
        diagnostic routine for global error assessment    D02PZF
        interpolant    D02PXF
        over a range with intermediate output    D02PCF
        over a step    D02PDF
        reset end of range    D02PWF
        set-up routine    D02PVF
    compute weighted norm of local error estimate    D02ZAF
    enquiry routine for use with sparse Jacobian    D02NRF
    integrator diagnostic routine    D02NYF
    integrator set-up for BDF method    D02NVF
    integrator set-up for Blend method    D02NWF
    integrator set-up for DASSL method    D02MVF
    linear algebra diagnostic routine for sparse Jacobians    D02NXF
    linear algebra set-up for banded Jacobians    D02NTF
    linear algebra set-up for full Jacobians    D02NSF
    linear algebra set-up for sparse Jacobians    D02NUF
    natural interpolant    D02MZF
    natural interpolant (for use by MONITR subroutine)    D02XJF
    set-up routine for continuation calls to integrator    D02NZF
    simple driver routines:    
        Runge–Kutta–Merson method:    
            until (optionally) a function of the solution is zero, with optional intermediate output    D02BJF
            until a function of the solution is zero    D02BHF
            until a specified component attains a given value    D02BGF
        variable-order variable-step Adams method:    
            until (optionally) a function of the solution is zero, with optional intermediate output    D02CJF
        variable-order variable-step BDF method for stiff systems:    
            until (optionally) a function of the solution is zero, with optional intermediate output    D02EJF
System of ordinary differential equations, boundary value problems:    
    collocation and least-squares:    
        single n th-order linear equation    D02JAF
        system of first-order linear equations    D02JBF
        system of n th-order linear equations    D02TGF
    comprehensive routines using a collocation technique:    
        continuation routine    D02TXF
        diagnostic routine    D02TZF
        general nonlinear problem solver    D02TKF
        interpolation routine    D02TYF
        set-up routine    D02TVF
    finite difference technique with deferred correction:    
        general linear problem    D02GBF
        general nonlinear problem, with continuation facility    D02RAF
        simple nonlinear problem    D02GAF
    shooting and matching technique:    
        boundary values to be determined    D02HAF
        general parameters to be determined    D02HBF
        general parameters to be determined, allowing interior matching-point    D02AGF
        general parameters to be determined, subject to extra algebraic equations    D02SAF
System of second-order ordinary differential equations:    
    Runge–Kutta–Nystrom method:    
        diagnostic routine    D02LYF
        integrator    D02LAF
        interpolating solutions    D02LZF
        set-up routine    D02LXF

D03 – Partial Differential Equations

Automatic mesh generation,    
    triangles over a plane domain    D03MAF
Black–Scholes equation,    
    analytic    D03NDF
    finite difference    D03NCF
Convection-diffusion system(s),    
    nonlinear,    
        one space dimension,    
            using upwind difference scheme based on Riemann solvers    D03PFF
            using upwind difference scheme based on Riemann solvers,    
                with coupled differential algebraic system    D03PLF
                with remeshing    D03PSF
Elliptic equations,    
    discretization on rectangular grid (seven-point two-dimensional molecule)    D03EEF
    equations on rectangular grid (seven-point two-dimensional molecule)    D03EDF
    finite difference equations (five-point two-dimensional molecule)    D03EBF
    finite difference equations (seven-point three-dimensional molecule)    D03ECF
    Helmholtz's equation in three dimensions    D03FAF
    Laplace's equation in two dimensions    D03EAF
First-order system(s),    
    nonlinear,    
        one space dimension,    
            using Keller box scheme    D03PEF
            using Keller box scheme,    
                with coupled differential algebraic system    D03PKF
                with remeshing    D03PRF
Partial differential equations (PDEs), elliptic:    
    PDEs, general system, one space variable, method of lines:    
        parabolic:    
            collocation spatial discretization:    
                coupled DAEs, comprehensive    D03PJF/D03PJA
                easy-to-use    D03PDF/D03PDA
            finite differences spatial discretization:    
                coupled DAEs, comprehensive    D03PHF/D03PHA
                coupled DAEs, remeshing, comprehensive    D03PPF/D03PPA
                easy-to-use    D03PCF/D03PCA
Second order system(s),    
    nonlinear,    
        two space dimensions,    
            in rectangular domain    D03RAF
            in rectilinear domain    D03RBF
Utility routine,    
    average values for D03NDF    D03NEF
    basic SIP for five-point two-dimensional molecule    D03UAF
    basic SIP for seven-point three-dimensional molecule    D03UBF
    check initial grid data for D03RBF    D03RYF
    exact Riemann solver for Euler equations    D03PXF
    HLL Riemann solver for Euler equations    D03PWF
    interpolation routine for collocation scheme    D03PYF
    interpolation routine for finite difference,    
        Keller box and upwind scheme    D03PZF
    Osher's Riemann solver for Euler equations    D03PVF
    return co-ordinates of grid points for D03RBF    D03RZF
    Roe's Riemann solver for Euler equations    D03PUF

D04 – Numerical Differentiation

Numerical differentiation of a function of one real variable,    
    derivatives up to order 14    D04AAF

D05 – Integral Equations

Fredholm equation of second kind,    
    linear,    
        non-singular discontinuous or ‘split’ kernel:    D05AAF
        non-singular smooth kernel:    D05ABF
Volterra equation of first kind,    
    nonlinear,    
        weakly-singular,    
            convolution equation (Abel):    D05BEF
Volterra equation of second kind,    
    nonlinear,    
        non-singular,    
            convolution equation:    D05BAF
        weakly-singular,    
            convolution equation (Abel):    D05BDF
Weight generating routines,    
    weights for general solution of Volterra equations    D05BWF
    weights for general solution of Volterra equations with weakly-singular kernel    D05BYF

D06 – Mesh Generation

Boundary mesh generation,    
     2 D  boundary mesh generation    D06BAF
Interior mesh generation,    
     2 D  mesh generation using a simple incremental method    D06AAF
     2 D  mesh generation using advancing front method    D06ACF
     2 D  mesh generation using Delaunay-Voronoi method    D06ABF
Mesh Management and Utility routine,    
     2 D  mesh smoother using a barycentering technique    D06CAF
     2 D  mesh transformer by an affine transformation    D06DAF
     2 D  mesh vertex renumbering    D06CCF
    finite Element matrix sparsity pattern generation    D06CBF
    joins together two given adjacent (possibly overlapping) meshes    D06DBF

E01 – Interpolation

Derivative,    
    of interpolant,    
        from E01BEF    E01BGF
        from E01SGF    E01SHF
        from E01TGF    E01THF
Evaluation,    
    of interpolant,    
        from E01BEF    E01BFF
        from E01RAF    E01RBF
        from E01SAF    E01SBF
        from E01SGF    E01SHF
        from E01TGF    E01THF
Extrapolation,    
    one variable    E01AAF
    one variable    E01AEF
    one variable    E01BEF
    one variable    E01RAF
Integration (definite) of interpolant from E01BEF    E01BHF
Interpolated values,    
    one variable,    
        from interpolant from E01BEF    E01BFF
        from interpolant from E01BEF    E01BGF
        from polynomial,    
            equally spaced data    E01ABF
            general data    E01AAF
        from rational function    E01RBF
    three variables,    
        from interpolant from E01TGF    E01THF
    two variables,    
        from interpolant from E01SAF    E01SBF
        from interpolant from E01SGF    E01SHF
Interpolating function,    
    one variable,    
        cubic spline    E01BAF
        other piecewise polynomial    E01BEF
        polynomial,    
            data with or without derivatives    E01AEF
        rational function    E01RAF
    three variables,    
        modified Shepard method    E01TGF
    two variables,    
        bicubic spline    E01DAF
        modified Shepard method    E01SAF
        modified Shepard method    E01SGF
        other piecewise polynomial    E01SAF

E02 – Curve and Surface Fitting

Automatic fitting,    
    with bicubic splines    E02DCF
    with bicubic splines    E02DDF
    with cubic splines    E02BEF
Data on lines    E02CAF
Data on rectangular mesh    E02DCF
Differentiation,    
    of cubic splines    E02BCF
    of polynomials    E02AHF
Evaluation,    
    of bicubic splines    E02DEF
    of bicubic splines    E02DFF
    of cubic splines    E02BBF
    of cubic splines and derivatives    E02BCF
    of definite integral of cubic splines    E02BDF
    of polynomials,    
        in one variable    E02AEF
        in one variable    E02AKF
        in two variables    E02CBF
    of rational functions    E02RBF
Integration,    
    of cubic splines (definite integral)    E02BDF
    of polynomials    E02AJF
l1  fit,    
    with constraints    E02GBF
    with general linear function    E02GAF
Least-squares curve fit,    
    with cubic splines    E02BAF
    with polynomials,    
        arbitrary data points    E02ADF
        selected data points    E02AFF
        with constraints    E02AGF
Least-squares surface fit,    
    with bicubic splines    E02DAF
    with polynomials    E02CAF
Minimax space fit,    
    with general linear function    E02GCF
    with polynomials in one variable    E02ACF
Padé approximants    E02RAF
Sorting    E02ZAF

E04 – Minimizing or Maximizing a Function

Constrained minimum of a sum of squares, nonlinear constraints,    
    using function values and optionally first derivatives, sequential QP method,    
        forward communication (dense)    E04USF/E04USA
Convex QP problem or linearly-constrained linear least-squares problem (dense)    E04NCF/E04NCA
Linear programming (LP) problem (dense)    E04MFF/E04MFA
LP or QP problem (sparse)    E04NQF
Minimum, function of one variable,    
    using first derivative    E04BBF/E04BBA
    using function values only    E04ABF/E04ABA
Minimum, function of several variables, nonlinear constraints (comprehensive),    
    using function values and optionally first derivatives, sequential QP method,    
        forward communication (dense)    E04WDF
        forward communication (sparse)    E04UGF/E04UGA
        forward communication (sparse)    E04VHF
        reverse communication (dense)    E04UFF/E04UFA
    using second derivatives,    
        combined Gauss–Newton and modified Newton algorithm    E04HYF
Minimum, function of several variables, simple bounds (comprehensive),    
    using first and second derivatives, modified Newton algorithm    E04LBF
    using first derivatives, modified Newton algorithm    E04KDF
Minimum, function of several variables, simple bounds (easy-to-use),    
    using first and second derivatives, modified Newton algorithm    E04LYF
    using first derivatives,    
        modified Newton algorithm    E04KZF
        quasi-Newton algorithm    E04KYF
    using function values only, quasi-Newton algorithm    E04JYF
Quadratic programming (QP) problem (dense)    E04NFF/E04NFA
Service routines:    
    check user's routine for calculating:    
        first derivatives of function    E04HCF
        Hessian of a sum of squares    E04YBF
        Jacobian of first derivatives    E04YAF
        second derivatives of function    E04HDF
    check user's routines calculating first derivatives of function and constraints    E04ZCF/E04ZCA
    convert MPSX data file defining LP or QP problem to format required by E04NQF    E04MZF
    covariance matrix for nonlinear least-squares problem    E04YCF
    determine Jacobian sparsity structure before a call of E04VHF    E04VJF
    estimate gradient and/or Hessian of a function    E04XAF/E04XAA
    Initialization routine for:    
         E04NQF    E04NPF
         E04VHF    E04VGF
         E04DGA, E04MFA, E04NCA, E04NFA, E04UFA, E04UGA and E04USA    E04WBF
         E04WDF    E04WCF
    retrieve INTEGER optional parameter values used by:    
         E04NQF    E04NXF
         E04NQF    E04NYF
         E04VHF    E04VRF
         E04VHF    E04VSF
         E04WDF    E04WKF
         E04WDF    E04WLF
    supply INTEGER optional parameter values to:    
         E04NQF    E04NTF
         E04NQF    E04NUF
         E04VHF    E04VMF
         E04VHF    E04VNF
         E04WDF    E04WGF
         E04WDF    E04WHF
    supply optional parameter values from external file for:    
         E04DGF/E04DGA    E04DJF/E04DJA
         E04MFF/E04MFA    E04MGF/E04MGA
         E04NCF/E04NCA    E04NDF/E04NDA
         E04NFF/E04NFA    E04NGF/E04NGA
         E04NQF    E04NRF
         E04UCF/E04UCA    E04UDF/E04UDA
         E04UGF/E04UGA    E04UHF/E04UHA
         E04USF/E04USA    E04UQF/E04UQA
         E04VHF    E04VKF
         E04WDF    E04WEF
    supply optional parameter values to,    
         E04UGF/E04UGA    E04UJF/E04UJA
    supply optional parameter values to:    
         E04DGF/E04DGA    E04DKF/E04DKA
         E04MFF/E04MFA    E04MHF/E04MHA
         E04NCF/E04NCA    E04NEF/E04NEA
         E04NFF/E04NFA    E04NHF/E04NHA
         E04NQF    E04NSF
         E04UCF/E04UCA    E04UEF/E04UEA
         E04USF/E04USA    E04URF/E04URA
         E04VHF    E04VLF
         E04WDF    E04WFF
         E04WDF    E04WJF
Unconstrained minimum of a sum of squares (comprehensive):    
    using first derivatives,    
        combined Gauss–Newton and modified Newton algorithm    E04GDF
        combined Gauss–Newton and quasi-Newton algorithm    E04GBF
    using function values only,    
        combined Gauss–Newton and modified Newton algorithm    E04FCF
    using second derivatives,    
        combined Gauss–Newton and modified Newton algorithm    E04HEF
Unconstrained minimum of a sum of squares (easy-to-use):    
    using first derivatives,    
        combined Gauss–Newton and modified Newton algorithm    E04GZF
        combined Gauss–Newton and quasi-Newton algorithm    E04GYF
    using function values only,    
        combined Gauss–Newton and modified Newton algorithm    E04FYF
Unconstrained minimum, function of several variables (comprehensive):    
    using first derivatives, pre-conditioned conjugate gradient algorithm    E04DGF/E04DGA
    using function values only, simplex algorithm    E04CCF/E04CCA

F01 – Matrix Operations, Including Inversion

Inversion (also see Chapter F07),    
    real m  by n  matrix,    
        pseudo inverse    F01BLF
    real symmetric positive-definite matrix,    
        accurate inverse    F01ABF
        approximate inverse    F01ADF
Matrix Arithmetic and Manipulation,    
    matrix addition,    
        complex matrices    F01CWF
        real matrices    F01CTF
    matrix multiplication    F01CKF
    matrix storage conversion,    
        packed band  rectangular storage,    
            complex matrices    F01ZDF
            real matrices    F01ZCF
        packed triangular  square storage,    
            complex matrices    F01ZBF
            eal matrices    F01ZAF
    matrix subtraction,    
        complex matrices    F01CWF
        real matrices    F01CTF
    matrix transpose    F01CRF
Matrix Transformations,    
    complex m  by n (mn)  matrix,    
         RQ factorization    F01RJF
    complex matrix, form unitary matrix    F01RKF
    complex upper trapezoidal matrix,    
         RQ factorization    F01RGF
    eigenproblem A x = λ B x , A , B  banded,    
        reduction to standard symmetric problem    F01BVF
    real almost block-diagonal matrix,    
         LU factorization    F01LHF
    real band symmetric positive-definite matrix,    
         U L D LT UT  factorization    F01BUF
        variable bandwidth, L D LT  factorization    F01MCF
    real m  by n (mn)  matrix,    
         RQ factorization    F01QJF
    real matrix,    
        form orthogonal matrix    F01QKF
    real Sparse matrix,    
        factorization    F01BRF
        factorization, known sparsity pattern    F01BSF
    real upper trapezoidal matrix,    
         RQ factorization    F01QGF
    tridiagonal matrix,    
         LU factorization    F01LEF

F02 – Eigenvalues and Eigenvectors

Black Box routines,    
    complex eigenproblem,    
        selected eigenvalues and eigenvectors    F02GCF
    complex upper triangular matrix,    
        singular values and, optionally, left and/or right singular vectors    F02XUF
    generalized real sparse symmetric-definite eigenproblem,    
        selected eigenvalues and eigenvectors    F02FJF
    real eigenproblem,    
        selected eigenvalues and eigenvectors    F02ECF
    real sparse symmetric matrix,    
        selected eigenvalues and eigenvectors    F02FJF
    real upper triangular matrix,    
        singular values and, optionally, left and/or right singular vectors    F02WUF
General Purpose routines (see also Chapter F08),    
    real band matrix, selected eigenvector, A - λ B      F02SDF
    real m  by n  matrix (mn) , Q R  factorization and SVD    F02WDF

F03 – Determinants

Black Box routines,    
    complex matrix    F03ADF
    real matrix    F03AAF
    real symmetric positive-definite band matrix    F03ACF
    real symmetric positive-definite matrix    F03ABF
General Purpose routines,    
    including the decomposition into triangular factors:    
        real matrix    F03AFF
        real symmetric positive-definite matrix    F03AEF

F04 – Simultaneous Linear Equations

Black Box routines, A x = b ,    
    complex general band matrix    F04CBF
    complex general matrix    F04CAF
    complex general tridiagonal matrix    F04CCF
    complex Hermitian matrix,    
        packed matrix format    F04CJF
        standard matrix format    F04CHF
    complex Hermitian positive-definite band matrix    F04CFF
    complex Hermitian positive-definite matrix,    
        packed matrix format    F04CEF
        standard matrix format    F04CDF
    complex Hermitian positive-definite tridiagonal matrix    F04CGF
    complex symmetric matrix,    
        packed matrix format    F04DJF
        standard matrix format    F04DHF
    real general band matrix    F04BBF
    Real general matrix    
        Multiple right-hand sides    
            Iterative refinement using additional precision    F04AEF
        Single right-hand side    
            Iterative refinement using additional precision    F04ATF
    real general matrix,    
        multiple right-hand sides, standard precision    F04BAF
    real general tridiagonal matrix    F04BCF
    real symmetric matrix,    
        packed matrix format    F04BJF
        standard matrix format    F04BHF
    real symmetric positive-definite band matrix    F04BFF
    Real symmetric positive-definite matrix    
        Multiple right-hand sides    
            Iterative refinement using additional precision    F04ABF
        Single right-hand side    
            Iterative refinement using additional precision    F04ASF
    real symmetric positive-definite matrix,    
        multiple right-hand sides, standard precision    F04BDF
        packed matrix format    F04BEF
    Real symmetric positive-definite Toeplitz matrix    
        General right-hand side    F04FFF
        Yule–Walker equations    F04FEF
    real symmetric positive-definite tridiagonal matrix    F04BGF
General Purpose routines, A x = b ,    
    real almost block-diagonal matrix    F04LHF
    real band symmetric positive-definite matrix, variable bandwidth    F04MCF
    real matrix    F04AJF
    real matrix, Iterative refinement    F04AHF
    real sparse matrix,    
        direct method    F04AXF
        iterative method    F04QAF
    real symmetric positive-definite matrix    F04AGF
    real symmetric positive-definite matrix, Iterative refinement    F04AFF
    real symmetric positive-definite Toeplitz matrix,    
        general right-hand side, Update solution    F04MFF
        Yule–Walker equations, Update solution    F04MEF
    real tridiagonal matrix    F04LEF
Least-squares and Homogeneous Equations,    
    real m  by n  matrix,    
         m n , Rank = n  or minimal solution    F04JGF
        rank = n , Iterative refinement    F04AMF
    real sparse matrix    F04QAF
Service Routines,    
    complex matrix,    
        norm and condition number estimation    F04ZCF
    real matrix,    
        covariance matrix for linear least-squares problems    F04YAF
        norm and condition number estimation    F04YCF

F05 – Orthogonalisation

Schmidt orthogonalisation of n  vectors of order m      F05AAF

F06 – Linear Algebra Support Routines

Level 0 (Scalar) operations:    
    Complex numbers:    
        apply similarity rotation to 2 by 2 Hermitian matrix    F06CHF
        generate a plane rotation, storing the tangent, real cosine    F06CAF
        generate a plane rotation, storing the tangent, real sine    F06CBF
        quotient of two numbers, with overflow flag    F06CLF
        recover cosine and sine from given tangent, real cosine    F06CCF
        recover cosine and sine from given tangent, real sine    F06CDF
    Real numbers:    
        apply similarity rotation to 2 by 2 symmetric matrix    F06BHF
        compute (a2+b2) 1 / 2      F06BNF
        compute Euclidean norm from scaled form    F06BMF
        eigenvalue of 2 by 2 symmetric matrix    F06BPF
        generate a Jacobi plane rotation    F06BEF
        generate a plane rotation    F06AAF (DROTG)
        generate a plane rotation storing the tangent    F06BAF
        quotient of two numbers, with overflow flag    F06BLF
        recover cosine and sine from given tangent    F06BCF
Level 1 (Vector) operations:    
    Complex vector(s),    
        add scalar times a vector to another vector    F06GCF (ZAXPY)
        apply a complex plane rotation    F06HPF
        apply a real plane rotation    F06KPF
        apply an elementary reflection to a vector    F06HTF
        broadcast a scalar into a vector    F06HBF
        copy a real vector to a complex vector    F06KFF
        copy a vector    F06GFF (ZCOPY)
        dot product of two vectors, conjugated    F06GBF (ZDOTC)
        dot product of two vectors, unconjugated    F06GAF (ZDOTU)
        Euclidean norm of a vector    F06JJF (DZNRM2)
        generate a sequence of plane rotations    F06HQF
        generate an elementary reflection    F06HRF
        index of element of largest absolute value    F06JMF (IZAMAX)
        multiply vector by a complex scalar    F06GDF (ZSCAL)
        multiply vector by a complex scalar, preserving input vector    F06HDF
        multiply vector by a real scalar    F06JDF (ZDSCAL)
        multiply vector by a real scalar, preserving input vector    F06KDF
        multiply vector by complex diagonal matrix    F06HCF
        multiply vector by real diagonal matrix    F06KCF
        multiply vector by reciprocal of a real scalar    F06KEF (ZDRSCL)
        negate a vector    F06HGF
        sum of absolute values of vector-elements    F06JKF (DZASUM)
        swap two vectors    F06GGF (ZSWAP)
        update Euclidean norm in scaled form    F06KJF
    Integer vector(s),    
        broadcast a scalar into a vector    F06DBF
        copy a vector    F06DFF
    Real vector(s),    
        add scalar times a vector to another vector    F06ECF (DAXPY)
        apply a symmetric plane rotation to two vectors    F06FPF
        apply an elementary reflection to a vector (Linpack style)    F06FUF
        apply an elementary reflection to a vector (NAG style)    F06FTF
        apply plane rotation    F06EPF (DROT)
        broadcast a scalar into a vector    F06FBF
        copy a vector    F06EFF (DCOPY)
        cosine of angle between two vectors    F06FAF
        dot product of two vectors    F06EAF (DDOT)
        elements of largest and smallest absolute value    F06FLF
        Euclidean norm of a vector    F06EJF (DNRM2)
        generate a sequence of plane rotations    F06FQF
        generate an elementary reflection (Linpack style)    F06FSF
        generate an elementary reflection (NAG style)    F06FRF
        index of element of largest absolute value    F06JLF (IDAMAX)
        index of last non-negligible element    F06KLF
        multiply vector by a scalar    F06EDF (DSCAL)
        multiply vector by a scalar, preserving input vector    F06FDF
        multiply vector by diagonal matrix    F06FCF
        multiply vector by reciprocal of a scalar    F06FEF (DRSCL)
        negate a vector    F06FGF
        sum of absolute values of vector-elements    F06EKF (DASUM)
        swap two vectors    F06EGF (DSWAP)
        update Euclidean norm in scaled form    F06FJF
        weighted Euclidean norm of a vector    F06FKF
Level 2 (Matrix-vector and matrix) operations:    
    Complex matrix and vector(s),    
        apply sequence of plane rotations to a rectangular matrix:    
            complex cosine, real sine    F06TYF
            real cosine and sine    F06VXF
            real cosine, complex sine    F06TXF
        compute a norm or the element of largest absolute value:    
            band matrix    F06UBF
            general matrix    F06UAF
            Hermitian band matrix    F06UEF
            Hermitian matrix    F06UCF
            Hermitian matrix, packed form    F06UDF
            Hermitian tridiagonal matrix    F06UPF
            Hessenberg matrix    F06UMF
            symmetric band matrix    F06UHF
            symmetric matrix    F06UFF
            symmetric matrix, packed form    F06UGF
            trapezoidal matrix    F06UJF
            triangular band matrix    F06ULF
            triangular matrix, packed form    F06UKF
            tridiagonal matrix    F06UNF
        compute upper Hessenberg matrix by applying sequence of plane rotations to an upper triangular matrix    F06TVF
        compute upper spiked matrix by applying sequence of plane rotations to an upper triangular matrix    F06TWF
        matrix initialization    F06THF
        matrix-vector product,    
            Hermitian band matrix    F06SDF (ZHBMV)
            Hermitian matrix    F06SCF (ZHEMV)
            Hermitian packed matrix    F06SEF (ZHPMV)
            rectangular band matrix    F06SBF (ZGBMV)
            rectangular matrix    F06SAF (ZGEMV)
            symmetric matrix    F06TAF (ZSYMV)
            symmetric packed matrix    F06TCF (ZSPMV)
            triangular band matrix    F06SGF (ZTBMV)
            triangular matrix    F06SFF (ZTRMV)
            triangular packed matrix    F06SHF (ZTPMV)
        permute rows or columns of a matrix:    
            permutations represented by a real array    F06VKF
            permutations represented by an integer array    F06VJF
         Q R  factorization by sequence of plane rotations:    
            of rank-1 update of upper triangular matrix    F06TPF
            of upper triangular matrix augmented by a full row    F06TQF
         Q R  factorization of U Z  or R Q  factorization of Z U , where U  is upper triangular and Z  is a sequence of plane rotations    F06TTF
         Q R  or R Q  factorization by sequence of plane rotations:    
            of upper Hessenberg matrix    F06TRF
            of upper spiked matrix    F06TSF
        rank-1 update,    
            Hermitian matrix    F06SPF (ZHER)
            Hermitian packed matrix    F06SQF (ZHPR)
            rectangular matrix, conjugated vector    F06SNF (ZGERC)
            rectangular matrix, unconjugated vector    F06SMF (ZGERU)
            symmetric matrix    F06TBF (ZSYR)
            symmetric packed matrix    F06TDF (ZSPR)
        rank-2 update,    
            Hermitian matrix    F06SRF (ZHER2)
            Hermitian packed matrix    F06SSF (ZHPR2)
            matrix copy, rectangular or trapezoidal    F06TFF
        solution of a system of equations:    
            triangular band matrix    F06SKF (ZTBSV)
            triangular matrix    F06SJF (ZTRSV)
            triangular packed matrix    F06SLF (ZTPSV)
        unitary similarity transformation of a Hermitian matrix,    
            as sequence of plane rotations    F06TMF
    Real matrix and vector(s),    
        apply sequence of plane rotations to a rectangular matrix    F06QXF
        compute a norm or the element of largest absolute value:    
            band matrix    F06RBF
            general matrix    F06RAF
            Hessenberg matrix    F06RMF
            matrix initialization    F06QHF
            symmetric band matrix    F06REF
            symmetric matrix    F06RCF
            symmetric matrix, packed form    F06RDF
            symmetric tridiagonal matrix    F06RPF
            trapezoidal matrix    F06RJF
            triangular band matrix    F06RLF
            triangular matrix, packed form    F06RKF
            tridiagonal matrix    F06RNF
        compute upper Hessenberg matrix by applying sequence of plane rotations to an upper triangular matrix    F06QVF
        compute upper spiked matrix by applying sequence of plane rotations to an upper triangular matrix    F06QWF
        matrix-vector product,    
            rectangular band matrix    F06PBF (DGBMV)
            rectangular matrix    F06PAF (DGEMV)
            symmetric band matrix    F06PDF (DSBMV)
            symmetric matrix    F06PCF (DSYMV)
            symmetric packed matrix    F06PEF (DSPMV)
            triangular band matrix    F06PGF (DTBMV)
            triangular matrix    F06PFF (DTRMV)
            triangular packed matrix    F06PHF (DTPMV)
        orthogonal similarity transformation of a symmetric matrix,    
            as sequence of plane rotations    F06QMF
        permute rows or columns of a matrix:    
            permutations represented by a real array    F06QKF
            permutations represented by an integer array    F06QJF
         Q R  factorization by sequence of plane rotations:    
            of rank-1 update of upper triangular matrix    F06QPF
            of upper triangular matrix augmented by a full row    F06QQF
         Q R  factorization of U Z  or R Q  factorization of Z U , where U  is upper triangular and Z  is a sequence of plane rotations    F06QTF
         Q R  or R Q  factorization by sequence of plane rotations:    
            of upper Hessenberg matrix    F06QRF
            of upper spiked matrix    F06QSF
        rank-1 update,    
            rectangular matrix    F06PMF (DGER)
            symmetric matrix    F06PPF (DSYR)
            symmetric packed matrix    F06PQF (DSPR)
        rank-2 update,    
            matrix copy, rectangular or trapezoidal    F06QFF
            symmetric matrix    F06PRF (DSYR2)
            symmetric packed matrix    F06PSF (DSPR2)
        solution of system of equations,    
            triangular band matrix    F06PKF (DTBSV)
            triangular matrix    F06PJF (DTRSV)
            triangular packed matrix    F06PLF (DTPSV)
Level 3 (Matrix-matrix) operations:    
    Complex matrices:    
        matrix-matrix product:    
            one matrix Hermitian    F06ZCF (ZHEMM)
            one matrix symmetric    F06ZTF (ZSYMM)
            triangular matrix    F06ZFF (ZTRMM)
            two rectangular matrices    F06ZAF (ZGEMM)
        rank- 2 k  update:    
            of a Hermitian matrix    F06ZRF (ZHER2K)
            of a symmetric matrix    F06ZWF (ZSYR2K)
        rank- k  update:    
            of a Hermitian matrix    F06ZPF (ZHERK)
            of a symmetric matrix    F06ZUF (ZSYRK)
        solution of triangular systems of equations    F06ZJF (ZTRSM)
    Real matrices:    
        matrix-matrix product:    
            one matrix symmetric    F06YCF (DSYMM)
            one matrix triangular    F06YFF (DTRMM)
            rectangular matrices    F06YAF (DGEMM)
        rank- 2 k  update of a symmetric matrix    F06YRF (DSYR2K)
        rank- k  update of a symmetric matrix    F06YPF (DSYRK)
        solution of triangular systems of equations    F06YJF (DTRSM)
Sparse level 1 (vector) operations:    
    Complex vectors:    
        add scalar times sparse vector to another sparse vector    F06GTF (ZAXPYI)
        dot product of two sparse vectors (conjugated)    F06GSF (ZDOTCI)
        dot product of two sparse vectors (unconjugated)    F06GRF (ZDOTUI)
        gather and set to zero a sparse vector    F06GVF (ZGTHRZ)
        gather sparse vector    F06GUF (ZGTHR)
        scatter sparse vector    F06GWF (ZSCTR)
    Real vectors:    
        add scalar times sparse vector to another sparse vector    F06ETF (DAXPYI)
        apply plane rotation to two sparse vectors    F06EXF (DROTI)
        dot product of two sparse vectors    F06ERF (DDOTI)
        gather and set to zero a sparse vector    F06EVF (DGTHRZ)
        gather sparse vector    F06EUF (DGTHR)
        scatter sparse vector    F06EWF (DSCTR)

F07 – Linear Equations (LAPACK)

Apply iterative refinement to the solution and compute error estimates:    
    after factorizing the matrix of coefficients:    
        complex band matrix    F07BVF (ZGBRFS)
        complex Hermitian indefinite matrix    F07MVF (ZHERFS)
        complex Hermitian indefinite matrix, packed storage    F07PVF (ZHPRFS)
        complex Hermitian positive-definite band matrix    F07HVF (ZPBRFS)
        complex Hermitian positive-definite matrix    F07FVF (ZPORFS)
        complex Hermitian positive-definite matrix, packed storage    F07GVF (ZPPRFS)
        complex Hermitian positive-definite tridiagonal matrix    F07JVF (ZPTRFS)
        complex matrix    F07AVF (ZGERFS)
        complex symmetric indefinite matrix    F07NVF (ZSYRFS)
        complex symmetric indefinite matrix, packed storage    F07QVF (ZSPRFS)
        complex tridiagonal matrix    F07CVF (ZGTRFS)
        real band matrix    F07BHF (DGBRFS)
        real matrix    F07AHF (DGERFS)
        real symmetric indefinite matrix    F07MHF (DSYRFS)
        real symmetric indefinite matrix, packed storage    F07PHF (DSPRFS)
        real symmetric positive-definite band matrix    F07HHF (DPBRFS)
        real symmetric positive-definite matrix    F07FHF (DPORFS)
        real symmetric positive-definite matrix, packed storage    F07GHF (DPPRFS)
        real symmetric positive-definite tridiagonal matrix    F07JHF (DPTRFS)
        real tridiagonal matrix    F07CHF (DGTRFS)
Compute error estimates:    
    complex triangular band matrix    F07VVF (ZTBRFS)
    complex triangular matrix    F07TVF (ZTRRFS)
    complex triangular matrix, packed storage    F07UVF (ZTPRFS)
    real triangular band matrix    F07VHF (DTBRFS)
    real triangular matrix    F07THF (DTRRFS)
    real triangular matrix, packed storage    F07UHF (DTPRFS)
Compute row and column scalings    
    complex band matrix    F07BTF (ZGBEQU)
    complex Hermitian positive-definite band matrix    F07HTF (ZPBEQU)
    complex Hermitian positive-definite matrix    F07FTF (ZPOEQU)
    complex Hermitian positive-definite matrix, packed storage    F07GTF (ZPPEQU)
    complex matrix    F07ATF (ZGEEQU)
    real band matrix    F07BFF (DGBEQU)
    real matrix    F07AFF (DGEEQU)
    real symmetric positive-definite band matrix    F07HFF (DPBEQU)
    real symmetric positive-definite matrix    F07FFF (DPOEQU)
    real symmetric positive-definite matrix, packed storage    F07GFF (DPPEQU)
Condition number estimation:    
    after factorizing the matrix of coefficients:    
        complex band matrix    F07BUF (ZGBCON)
        complex Hermitian indefinite matrix    F07MUF (ZHECON)
        complex Hermitian indefinite matrix, packed storage    F07PUF (ZHPCON)
        complex Hermitian positive-definite band matrix    F07HUF (ZPBCON)
        complex Hermitian positive-definite matrix    F07FUF (ZPOCON)
        complex Hermitian positive-definite matrix, packed storage    F07GUF (ZPPCON)
        complex Hermitian positive-definite tridiagonal matrix    F07JUF (ZPTCON)
        complex matrix    F07AUF (ZGECON)
        complex symmetric indefinite matrix    F07NUF (ZSYCON)
        complex symmetric indefinite matrix, packed storage    F07QUF (ZSPCON)
        complex tridiagonal matrix    F07CUF (ZGTCON)
        real band matrix    F07BGF (DGBCON)
        real matrix    F07AGF (DGECON)
        real symmetric indefinite matrix    F07MGF (DSYCON)
        real symmetric indefinite matrix, packed storage    F07PGF (DSPCON)
        real symmetric positive-definite band matrix    F07HGF (DPBCON)
        real symmetric positive-definite matrix    F07FGF (DPOCON)
        real symmetric positive-definite matrix, packed storage    F07GGF (DPPCON)
        real symmetric positive-definite tridiagonal matrix    F07JGF (DPTCON)
        real tridiagonal matrix    F07CGF (DGTCON)
    complex triangular band matrix    F07VUF (ZTBCON)
    complex triangular matrix    F07TUF (ZTRCON)
    complex triangular matrix, packed storage    F07UUF (ZTPCON)
    real triangular band matrix    F07VGF (DTBCON)
    real triangular matrix    F07TGF (DTRCON)
    real triangular matrix, packed storage    F07UGF (DTPCON)
L × D × L  factorization:    
    complex Hermitian positive-definite tridiagonal matrix    F07JRF (ZPTTRF)
    real symmetric positive-definite tridiagonal matrix    F07JDF (DPTTRF)
L LT  or UT U  factorization:    
    complex Hermitian positive-definite band matrix    F07HRF (ZPBTRF)
    complex Hermitian positive-definite matrix    F07FRF (ZPOTRF)
    complex Hermitian positive-definite matrix, packed storage    F07GRF (ZPPTRF)
    real symmetric positive-definite band matrix    F07HDF (DPBTRF)
    real symmetric positive-definite matrix    F07FDF (DPOTRF)
    real symmetric positive-definite matrix, packed storage    F07GDF (DPPTRF)
L U  factorization:    
    complex band matrix    F07BRF (ZGBTRF)
    complex matrix    F07ARF (ZGETRF)
    complex tridiagonal matrix    F07CRF (ZGTTRF)
    real band matrix    F07BDF (DGBTRF)
    real matrix    F07ADF (DGETRF)
    real tridiagonal matrix    F07CDF (DGTTRF)
Matrix inversion:    
    after factorizing the matrix of coefficients:    
        complex Hermitian indefinite matrix    F07MWF (ZHETRI)
        complex Hermitian indefinite matrix, packed storage    F07PWF (ZHPTRI)
        complex Hermitian positive-definite matrix    F07FWF (ZPOTRI)
        complex Hermitian positive-definite matrix, packed storage    F07GWF (ZPPTRI)
        complex matrix    F07AWF (ZGETRI)
        complex symmetric indefinite matrix    F07NWF (ZSYTRI)
        complex symmetric indefinite matrix, packed storage    F07QWF (ZSPTRI)
        real matrix    F07AJF (DGETRI)
        real symmetric indefinite matrix    F07MJF (DSYTRI)
        real symmetric indefinite matrix, packed storage    F07PJF (DSPTRI)
        real symmetric positive-definite matrix    F07FJF (DPOTRI)
        real symmetric positive-definite matrix, packed storage    F07GJF (DPPTRI)
    complex triangular matrix    F07TWF (ZTRTRI)
    complex triangular matrix, packed storage    F07UWF (ZTPTRI)
    real triangular matrix    F07TJF (DTRTRI)
    real triangular matrix, packed storage    F07UJF (DTPTRI)
P L D LT PT  or P U D UT PT  factorization:    
    complex Hermitian indefinite matrix    F07MRF (ZHETRF)
    complex Hermitian indefinite matrix, packed storage    F07PRF (ZHPTRF)
    complex symmetric indefinite matrix    F07NRF (ZSYTRF)
    complex symmetric indefinite matrix, packed storage    F07QRF (ZSPTRF)
    real symmetric indefinite matrix    F07MDF (DSYTRF)
    real symmetric indefinite matrix, packed storage    F07PDF (DSPTRF)
Solution of simultaneous linear equations:    
    after factorizing the matrix of coefficients:    
        complex band matrix    F07BSF (ZGBTRS)
        complex Hermitian indefinite matrix    F07MSF (ZHETRS)
        complex Hermitian indefinite matrix, packed storage    F07PSF (ZHPTRS)
        complex Hermitian positive-definite band matrix    F07HSF (ZPBTRS)
        complex Hermitian positive-definite matrix    F07FSF (ZPOTRS)
        complex Hermitian positive-definite matrix, packed storage    F07GSF (ZPPTRS)
        complex Hermitian positive-definite tridiagonal matrix    F07JSF (ZPTTRS)
        complex matrix    F07ASF (ZGETRS)
        complex symmetric indefinite matrix    F07NSF (ZSYTRS)
        complex symmetric indefinite matrix, packed storage    F07QSF (ZSPTRS)
        complex tridiagonal matrix    F07CSF (ZGTTRS)
        real band matrix    F07BEF (DGBTRS)
        real matrix    F07AEF (DGETRS)
        real symmetric indefinite matrix    F07MEF (DSYTRS)
        real symmetric indefinite matrix, packed storage    F07PEF (DSPTRS)
        real symmetric positive-definite band matrix    F07HEF (DPBTRS)
        real symmetric positive-definite matrix    F07FEF (DPOTRS)
        real symmetric positive-definite matrix, packed storage    F07GEF (DPPTRS)
        real symmetric positive-definite tridiagonal matrix    F07JEF (DPTTRS)
        real tridiagonal matrix    F07CEF (DGTTRS)
    complex band matrices    F07BNF (ZGBSV)
    complex Hermitian indefinite matrix    F07MNF (ZHESV)
    complex Hermitian indefinite matrix, packed storage    F07PNF (ZHPSV)
    complex Hermitian positive-definite band matrix    F07HNF (ZPBSV)
    complex Hermitian positive-definite matrix    F07FNF (ZPOSV)
    complex Hermitian positive-definite matrix, packed storage    F07GNF (ZPPSV)
    complex Hermitian positive-definite tridiagonal matrix    F07JNF (ZPTSV)
    complex matrix    F07ANF (ZGESV)
    complex symmetric indefinite matrix    F07NNF (ZSYSV)
    complex symmetric indefinite matrix, packed storage    F07QNF (ZSPSV)
    complex triangular band matrix    F07VSF (ZTBTRS)
    complex triangular matrix    F07TSF (ZTRTRS)
    complex triangular matrix, packed storage    F07USF (ZTPTRS)
    complex tridiagonal matrix    F07CNF (ZGTSV)
    real band matrix    F07BAF (DGBSV)
    real matrix    F07AAF (DGESV)
    real symmetric indefinite matrix    F07MAF (DSYSV)
    real symmetric indefinite matrix, packed storage    F07PAF (DSPSV)
    real symmetric positive-definite band matrix    F07HAF (DPBSV)
    real symmetric positive-definite matrix    F07FAF (DPOSV)
    real symmetric positive-definite matrix, packed storage    F07GAF (DPPSV)
    real symmetric positive-definite tridiagonal matrix    F07JAF (DPTSV)
    real triangular band matrix    F07VEF (DTBTRS)
    real triangular matrix    F07TEF (DTRTRS)
    real triangular matrix, packed storage    F07UEF (DTPTRS)
    real tridiagonal matrix    F07CAF (DGTSV)
    with condition and error estimation:    
        complex band matrix    F07BPF (ZGBSVX)
        complex Hermitian indefinite matrix    F07MPF (ZHESVX)
        complex Hermitian indefinite matrix, packed storage    F07PPF (ZHPSVX)
        complex Hermitian positive-definite band matrix    F07HPF (ZPBSVX)
        complex Hermitian positive-definite matrix    F07FPF (ZPOSVX)
        complex Hermitian positive-definite matrix, packed storage    F07GPF (ZPPSVX)
        complex Hermitian positive-definite tridiagonal matrix    F07JPF (ZPTSVX)
        complex matrix    F07APF (ZGESVX)
        complex symmetric indefinite matrix    F07NPF (ZSYSVX)
        complex symmetric indefinite matrix, packed storage    F07QPF (ZSPSVX)
        complex tridiagonal matrix    F07CPF (ZGTSVX)
        real band matrix    F07BBF (DGBSVX)
        real matrix    F07ABF (DGESVX)
        real symmetric indefinite matrix    F07MBF (DSYSVX)
        real symmetric indefinite matrix, packed storage    F07PBF (DSPSVX)
        real symmetric positive-definite band matrix    F07HBF (DPBSVX)
        real symmetric positive-definite matrix    F07FBF (DPOSVX)
        real symmetric positive-definite matrix, packed storage    F07GBF (DPPSVX)
        real symmetric positive-definite tridiagonal matrix    F07JBF (DPTSVX)
        real tridiagonal matrix    F07CBF (DGTSVX)

F08 – Least-squares and Eigenvalue Problems (LAPACK)

Backtransformation of eigenvectors from those of balanced forms:    
    complex matrix    F08NWF (ZGEBAK)
    complex matrix    F08WWF (ZGGBAK)
    real matrix    F08NJF (DGEBAK)
    real matrix    F08WJF (DGGBAK)
Balancing:    
    complex general matrix    F08NVF (ZGEBAL)
    complex general matrix    F08WVF (ZGGBAL)
    real general matrix    F08NHF (DGEBAL)
    real general matrix    F08WHF (DGGBAL)
Eigenvalue problems for condensed forms of matrices:    
    complex Hermitian matrix:    
        eigenvalues and eigenvectors:    
            band matrix:    
                all eigenvalues and eigenvectors by a divide-and-conquer algorithm, using packed storage    F08HQF (ZHBEVD)
                all eigenvalues and eigenvectors by root-free Q R  algorithm    F08HNF (ZHBEV)
                all eigenvalues and eigenvectors by root-free Q R  algorithm or selected eigenvalues and eigenvectors by bisection and inverse iteration    F08HPF (ZHBEVX)
            general matrix:    
                all eigenvalues and eigenvectors by a divide-and-conquer algorithm    F08FQF (ZHEEVD)
                all eigenvalues and eigenvectors by a divide-and-conquer algorithm, using packed storage    F08GQF (ZHPEVD)
                all eigenvalues and eigenvectors by root-free Q R  algorithm    F08FNF (ZHEEV)
                all eigenvalues and eigenvectors by root-free Q R  algorithm or selected eigenvalues and eigenvectors by bisection and inverse iteration    F08FPF (ZHEEVX)
                all eigenvalues and eigenvectors by root-free Q R  algorithm or selected eigenvalues and eigenvectors by bisection and inverse iteration, using packed storage    F08GPF (ZHPEVX)
                all eigenvalues and eigenvectors by root-free Q R  algorithm, using packed storage    F08GNF (ZHPEV)
                all eigenvalues and eigenvectors using Relatively Robust Representations or selected eigenvalues and eigenvectors by bisection and inverse iteration    F08FRF (ZHEEVR)
        eigenvalues only:    
            band matrix:    
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm    F08HNF (ZHBEV)
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm, or selected eigenvalues by bisection    F08HPF (ZHBEVX)
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm, using packed storage    F08HQF (ZHBEVD)
            general matrix:    
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm    F08FNF (ZHEEV)
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm    F08FQF (ZHEEVD)
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm, or selected eigenvalues by bisection    F08FPF (ZHEEVX)
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm, or selected eigenvalues by bisection    F08FRF (ZHEEVR)
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm, or selected eigenvalues by bisection, using packed storage    F08GPF (ZHPEVX)
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm, using packed storage    F08GNF (ZHPEV)
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm, using packed storage    F08GQF (ZHPEVD)
    complex upper Hessenberg matrix, reduced from complex general matrix:    
        eigenvalues and Schur factorization    F08PSF (ZHSEQR)
        selected right and/or left eigenvectors by inverse iteration    F08PXF (ZHSEIN)
    real bidiagonal matrix:    
        singular value decomposition:    
            after reduction from complex general matrix    F08MSF (ZBDSQR)
            after reduction from real general matrix    F08MEF (DBDSQR)
            after reduction from real general matrix, using divide-and-conquer    F08MDF (DBDSDC)
    real symmetric matrix:    
        eigenvalues and eigenvectors:    
            band matrix:    
                all eigenvalues and eigenvectors by a divide-and-conquer algorithm    F08HCF (DSBEVD)
                all eigenvalues and eigenvectors by root-free Q R  algorithm    F08HAF (DSBEV)
                all eigenvalues and eigenvectors by root-free Q R  algorithm or selected eigenvalues and eigenvectors by bisection and inverse iteration    F08HBF (DSBEVX)
            general matrix:    
                all eigenvalues and eigenvectors by a divide-and-conquer algorithm    F08FCF (DSYEVD)
                all eigenvalues and eigenvectors by a divide-and-conquer algorithm, using packed storage    F08GCF (DSPEVD)
                all eigenvalues and eigenvectors by root-free Q R  algorithm    F08FAF (DSYEV)
                all eigenvalues and eigenvectors by root-free Q R  algorithm or selected eigenvalues and eigenvectors by bisection and inverse iteration    F08FBF (DSYEVX)
                all eigenvalues and eigenvectors by root-free Q R  algorithm or selected eigenvalues and eigenvectors by bisection and inverse iteration, using packed storage    F08GBF (DSPEVX)
                all eigenvalues and eigenvectors by root-free Q R  algorithm, using packed storage    F08GAF (DSPEV)
                all eigenvalues and eigenvectors using Relatively Robust Representations or selected eigenvalues and eigenvectors by bisection and inverse iteration    F08FDF (DSYEVR)
        eigenvalues only:    
            band matrix:    
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm    F08HAF (DSBEV)
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm    F08HCF (DSBEVD)
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm, or selected eigenvalues by bisection    F08HBF (DSBEVX)
            general matrix:    
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm    F08FAF (DSYEV)
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm    F08FCF (DSYEVD)
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm, or selected eigenvalues by bisection    F08FBF (DSYEVX)
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm, or selected eigenvalues by bisection    F08FDF (DSYEVR)
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm, or selected eigenvalues by bisection, using packed storage    F08GBF (DSPEVX)
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm, using packed storage    F08GAF (DSPEV)
                all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm, using packed storage    F08GCF (DSPEVD)
    real symmetric tridiagonal matrix:    
        eigenvalues and eigenvectors:    
            after reduction from complex Hermitian matrix:    
                all eigenvalues and eigenvectors    F08JSF (ZSTEQR)
                all eigenvalues and eigenvectors, positive-definite matrix    F08JUF (ZPTEQR)
                all eigenvalues and eigenvectors, using divide-and-conquer    F08JVF (ZSTEDC)
                all eigenvalues and eigenvectors, using Relatively Robust Representations    F08JYF (ZSTEGR)
                selected eigenvectors by inverse iteration    F08JXF (ZSTEIN)
            all eigenvalues and eigenvectors    F08JEF (DSTEQR)
            all eigenvalues and eigenvectors by a divide-and-conquer algorithm    F08JCF (DSTEVD)
            all eigenvalues and eigenvectors by root-free Q R  algorithm    F08JAF (DSTEV)
            all eigenvalues and eigenvectors by root-free Q R  algorithm or selected eigenvalues and eigenvectors by bisection and inverse iteration    F08JBF (DSTEVX)
            all eigenvalues and eigenvectors using Relatively Robust Representations or selected eigenvalues and eigenvectors by bisection and inverse iteration    F08JDF (DSTEVR)
            all eigenvalues and eigenvectors, by divide-and-conquer    F08JHF (DSTEDC)
            all eigenvalues and eigenvectors, positive-definite matrix    F08JGF (DPTEQR)
            all eigenvalues and eigenvectors, using Relatively Robust Representations    F08JLF (DSTEGR)
            selected eigenvectors by inverse iteration    F08JKF (DSTEIN)
        eigenvalues only:    
            all eigenvalues by root-free Q R  algorithm    F08JFF (DSTERF)
            all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm    F08JAF (DSTEV)
            all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm    F08JCF (DSTEVD)
            all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm, or selected eigenvalues by bisection    F08JBF (DSTEVX)
            all eigenvalues by the Pal–Walker–Kahan variant of the Q L  or Q R  algorithm, or selected eigenvalues by bisection    F08JDF (DSTEVR)
            selected eigenvalues by bisection    F08JJF (DSTEBZ)
    real upper Hessenberg matrix, reduced from real general matrix:    
        eigenvalues and Schur factorization    F08PEF (DHSEQR)
        selected right and/or left eigenvectors by inverse iteration    F08PKF (DHSEIN)
Eigenvalue problems for nonsymmetric matrices:    
    complex matrix:    
        all eigenvalues and left/right eigenvectors    F08NNF (ZGEEV)
        all eigenvalues and left/right eigenvectors, plus balancing transformation and reciprocal condition numbers    F08NPF (ZGEEVX)
        all eigenvalues, Schur form and Schur vectors    F08PNF (ZGEES)
        all eigenvalues, Schur form, Schur vectors and reciprocal condition numbers    F08PPF (ZGEESX)
    real matrix:    
        all eigenvalues and left/right eigenvectors    F08NAF (DGEEV)
        all eigenvalues and left/right eigenvectors, plus balancing transformation and reciprocal condition numbers    F08NBF (DGEEVX)
        all eigenvalues, real Schur form and Schur vectors    F08PAF (DGEES)
        all eigenvalues, real Schur form, Schur vectors and reciprocal condition numbers    F08PBF (DGEESX)
Eigenvalues and generalized Schur factorization,    
    complex generalized upper Hessenberg form    F08XSF (ZHGEQZ)
    real generalized upper Hessenberg form    F08XEF (DHGEQZ)
General Gauss-Markov linear model:    
    solves a complex general Gauss-Markov linear model problem    F08ZPF (ZGGGLM)
    solves a real general Gauss-Markov linear model problem    F08ZBF (DGGGLM)
Generalized eigenvalue problems for condensed forms of matrices:    
    complex Hermitian-definite eigenproblems:    
        banded matrices:    
            all eigenvalues and eigenvectors by a divide-and-conquer algorithm    F08UQF (ZHBGVD)
            all eigenvalues and eigenvectors by reduction to tridiagonal form    F08UNF (ZHBGV)
            selected eigenvalues and eigenvectors by reduction to tridiagonal form    F08UPF (ZHBGVX)
        general matrices:    
            all eigenvalues and eigenvectors by a divide-and-conquer algorithm    F08SQF (ZHEGVD)
            all eigenvalues and eigenvectors by a divide-and-conquer algorithm, packed storage format    F08TQF (ZHPGVD)
            all eigenvalues and eigenvectors by reduction to tridiagonal form    F08SNF (ZHEGV)
            all eigenvalues and eigenvectors by reduction to tridiagonal form, packed storage format    F08TNF (ZHPGV)
            selected eigenvalues and eigenvectors by reduction to tridiagonal form    F08SPF (ZHEGVX)
            selected eigenvalues and eigenvectors by reduction to tridiagonal form, packed storage format    F08TPF (ZHPGVX)
    real symmetric-definite eigenproblems:    
        banded matrices:    
            all eigenvalues and eigenvectors by a divide-and-conquer algorithm    F08UCF (DSBGVD)
            all eigenvalues and eigenvectors by reduction to tridiagonal form    F08UAF (DSBGV)
            selected eigenvalues and eigenvectors by reduction to tridiagonal form    F08UBF (DSBGVX)
        general matrices:    
            all eigenvalues and eigenvectors by a divide-and-conquer algorithm    F08SCF (DSYGVD)
            all eigenvalues and eigenvectors by a divide-and-conquer algorithm, packed storage format    F08TCF (DSPGVD)
            all eigenvalues and eigenvectors by reduction to tridiagonal form    F08SAF (DSYGV)
            all eigenvalues and eigenvectors by reduction to tridiagonal form, packed storage format    F08TAF (DSPGV)
            selected eigenvalues and eigenvectors by reduction to tridiagonal form    F08SBF (DSYGVX)
            selected eigenvalues and eigenvectors by reduction to tridiagonal form, packed storage format    F08TBF (DSPGVX)
Generalized eigenvalue problems for nonsymmetric matrix pairs:    
    complex nonsymmetric matrix pairs:    
        all eigenvalues and left/right eigenvectors    F08WNF (ZGGEV)
        all eigenvalues and left/right eigenvectors, plus the balancing transformation and reciprocal condition numbers    F08WPF (ZGGEVX)
        all eigenvalues, generalized Schur form and Schur vectors    F08XNF (ZGGES)
        all eigenvalues, generalized Schur form, Schur vectors and reciprocal condition numbers    F08XPF (ZGGESX)
    real nonsymmetric matrix pairs:    
        all eigenvalues and left/right eigenvectors    F08WAF (DGGEV)
        all eigenvalues and left/right eigenvectors, plus the balancing transformation and reciprocal condition numbers    F08WBF (DGGEVX)
        all eigenvalues, generalized real Schur form and left/right Schur vectors    F08XAF (DGGES)
        all eigenvalues, generalized real Schur form and left/right Schur vectors, plus reciprocal condition numbers    F08XBF (DGGESX)
Generalized Q R  factorization:    
    complex matrices:    F08ZSF (ZGGQRF)
    real matrices:    F08ZEF (DGGQRF)
Generalized R Q  factorization:    
    complex matrices:    F08ZTF (ZGGRQF)
    real matrices:    F08ZFF (DGGRQF)
Generalized singular value decomposition    
    after reduction from complex general matrix:    
        complex triangular or trapezoidal matrix pair    F08YSF (ZTGSJA)
    after reduction from real general matrix:    
        real triangular or trapezoidal matrix pair    F08YEF (DTGSJA)
    complex matrix pair    F08VNF (ZGGSVD)
    real matrix pair    F08VAF (DGGSVD)
    reduction of a pair of general matrices to triangular or trapezoidal form:    
        complex matrices    F08VSF (ZGGSVP)
        real matrices    F08VEF (DGGSVP)
Least squares problems with linear equality constraints    
    complex matrices:    
        minimum norm solution subject to linear equality constraints using a generalized R Q  factorization    F08ZNF (ZGGLSE)
    real matrices:    
        minimum norm solution subject to linear equality constraints using a generalized R Q  factorization    F08ZAF (DGGLSE)
Least squares problems:    
    complex matrices:    
        apply orthogonal matrix    F08BXF (ZUNMRZ)
        minimum norm solution using a complete orthogonal factorization    F08BNF (ZGELSY)
        minimum norm solution using the singular value decomposition    F08KNF (ZGELSS)
        minimum norm solution using the singular value decomposition (divide-and-conquer)    F08KQF (ZGELSD)
        reduction of upper trapezoidal matrix to upper triangular form    F08BVF (ZTZRZF)
    real matrices:    
        apply orthogonal matrix    F08BKF (DORMRZ)
        minimum norm solution using a complete orthogonal factorization    F08BAF (DGELSY)
        minimum norm solution using the singular value decomposition    F08KAF (DGELSS)
        minimum norm solution using the singular value decomposition (divide-and-conquer)    F08KCF (DGELSD)
        reduction of upper trapezoidal matrix to upper triangular form    F08BHF (DTZRZF)
Left and right eigenvectors of a pair of matrices:    
    complex upper triangular matrices    F08YXF (ZTGEVC)
    real quasi-triangular matrices    F08YKF (DTGEVC)
L Q  factorization and related operations:    
    complex matrices:    
        apply unitary matrix    F08AXF (ZUNMLQ)
        factorization    F08AVF (ZGELQF)
        form all or part of unitary matrix    F08AWF (ZUNGLQ)
    real matrices:    
        apply orthogonal matrix    F08AKF (DORMLQ)
        factorization    F08AHF (DGELQF)
        form all or part of orthogonal matrix    F08AJF (DORGLQ)
Operations on eigenvectors of a real symmetric or complex Hermitian matrix, or singular vectors of a general matrix:    
    estimate condition numbers    F08FLF (DDISNA)
Operations on generalized Schur factorization of a general matrix pair:    
    complex matrix:    
        estimate condition numbers of eigenvalues and/or eigenvectors    F08YYF (ZTGSNA)
        re-order Schur factorization    F08YTF (ZTGEXC)
        re-order Schur factorization, compute generalized eigenvalues and condition numbers    F08YUF (ZTGSEN)
    real matrix:    
        estimate condition numbers of eigenvalues and/or eigenvectors    F08YLF (DTGSNA)
        re-order Schur factorization    F08YFF (DTGEXC)
        re-order Schur factorization, compute generalized eigenvalues and condition numbers    F08YGF (DTGSEN)
Operations on Schur factorization of a general matrix:    
    complex matrix:    
        compute left and/or right eigenvectors    F08QXF (ZTREVC)
        estimate sensitivities of eigenvalues and/or eigenvectors    F08QYF (ZTRSNA)
        re-order Schur factorization    F08QTF (ZTREXC)
        re-order Schur factorization, compute basis of invariant subspace, and estimate sensitivities    F08QUF (ZTRSEN)
    real matrix:    
        compute left and/or right eigenvectors    F08QKF (DTREVC)
        estimate sensitivities of eigenvalues and/or eigenvectors    F08QLF (DTRSNA)
        re-order Schur factorization    F08QFF (DTREXC)
        re-order Schur factorization, compute basis of invariant subspace, and estimate sensitivities    F08QGF (DTRSEN)
Overdetermined and underdetermined linear systems    
    complex matrices:    
        solves an overdetermined or undetermined complex linear system    F08ANF (ZGELS)
    real matrices:    
        solves an overdetermined or undetermined real linear system    F08AAF (DGELS)
Q L  factorization and related operations:    
    complex matrices:    
        apply unitary matrix    F08CUF (ZUNMQL)
        factorization    F08CSF (ZGEQLF)
        form all or part of unitary matrix    F08CTF (ZUNGQL)
    real matrices:    
        apply orthogonal matrix    F08CGF (DORMQL)
        factorization    F08CEF (DGEQLF)
        form all or part of orthogonal matrix    F08CFF (DORGQL)
Q R  factorization and related operations:    
    complex matrices:    
        apply unitary matrix    F08AUF (ZUNMQR)
        factorization    F08ASF (ZGEQRF)
        factorization,    
            with column pivoting, using BLAS-3    F08BTF (ZGEQP3)
        factorization, with column pivoting    F08BSF (ZGEQPF)
        form all or part of unitary matrix    F08ATF (ZUNGQR)
    real matrices:    
        apply orthogonal matrix    F08AGF (DORMQR)
        factorization    F08AEF (DGEQRF)
        factorization,    
            with column pivoting, using BLAS-3    F08BFF (DGEQP3)
        factorization, with column pivoting    F08BEF (DGEQPF)
        form all or part of orthogonal matrix    F08AFF (DORGQR)
Reduction of a pair of general matrices to generalized upper Hessenberg form,    
    orthogonal reduction, real matrices    F08WEF (DGGHRD)
    unitary reduction, complex matrices    F08WSF (ZGGHRD)
Reduction of eigenvalue problems to condensed forms, and related operations:    
    complex general matrix to upper Hessenberg form:    
        apply orthogonal matrix    F08NUF (ZUNMHR)
        form orthogonal matrix    F08NTF (ZUNGHR)
        reduce to Hessenberg form    F08NSF (ZGEHRD)
    complex Hermitian band matrix to real symmetric tridiagonal form    F08HSF (ZHBTRD)
    complex Hermitian matrix to real symmetric tridiagonal form:    
        apply unitary matrix    F08FUF (ZUNMTR)
        apply unitary matrix, packed storage    F08GUF (ZUPMTR)
        form unitary matrix    F08FTF (ZUNGTR)
        form unitary matrix, packed storage    F08GTF (ZUPGTR)
        reduce to tridiagonal form    F08FSF (ZHETRD)
        reduce to tridiagonal form, packed storage    F08GSF (ZHPTRD)
    complex rectangular band matrix to real upper bidiagonal form    F08LSF (ZGBBRD)
    complex rectangular matrix to real bidiagonal form:    
        apply unitary matrix    F08KUF (ZUNMBR)
        form unitary matrix    F08KTF (ZUNGBR)
        reduce to bidiagonal form    F08KSF (ZGEBRD)
    real general matrix to upper Hessenberg form:    
        apply orthogonal matrix    F08NGF (DORMHR)
        form orthogonal matrix    F08NFF (DORGHR)
        reduce to Hessenberg form    F08NEF (DGEHRD)
    real rectangular band matrix to upper bidiagonal form    F08LEF (DGBBRD)
    real rectangular matrix to bidiagonal form:    
        apply orthogonal matrix    F08KGF (DORMBR)
        form orthogonal matrix    F08KFF (DORGBR)
        reduce to bidiagonal form    F08KEF (DGEBRD)
    real symmetric band matrix to symmetric tridiagonal form    F08HEF (DSBTRD)
    real symmetric matrix to symmetric tridiagonal form:    
        apply orthogonal matrix    F08FGF (DORMTR)
        apply orthogonal matrix, packed storage    F08GGF (DOPMTR)
        form orthogonal matrix    F08FFF (DORGTR)
        form orthogonal matrix, packed storage    F08GFF (DOPGTR)
        reduce to tridiagonal form    F08FEF (DSYTRD)
        reduce to tridiagonal form, packed storage    F08GEF (DSPTRD)
Reduction of generalized eigenproblems to standard eigenproblems:    
    complex Hermitian-definite banded generalized eigenproblem A x = λ B x      F08USF (ZHBGST)
    complex Hermitian-definite generalized eigenproblem A x = λ B x , A B x = λ x  or B A x = λ x      F08SSF (ZHEGST)
    complex Hermitian-definite generalized eigenproblem A x = λ B x , A B x = λ x  or B A x = λ x , packed storage    F08TSF (ZHPGST)
    real symmetric-definite banded generalized eigenproblem A x = λ B x      F08UEF (DSBGST)
    real symmetric-definite generalized eigenproblem A x = λ B x , A B x = λ x  or B A x = λ x      F08SEF (DSYGST)
    real symmetric-definite generalized eigenproblem A x = λ B x , A B x = λ x  or B A x = λ x , packed storage    F08TEF (DSPGST)
R Q  factorization and related operations:    
    complex matrices:    
        apply unitary matrix    F08CXF (ZUNMRQ)
        factorization    F08CVF (ZGERQF)
        form all or part of unitary matrix    F08CWF (ZUNGRQ)
    real matrices:    
        apply orthogonal matrix    F08CKF (DORMRQ)
        factorization    F08CHF (DGERQF)
        form all or part of orthogonal matrix    F08CJF (DORGRQ)
Singular value decomposition    
    complex matrix:    
        using a divide-and-conquer algorithm    F08KRF (ZGESDD)
        using bidiagonal Q R  iteration    F08KPF (ZGESVD)
    real matrix:    
        using a divide-and-conquer algorithm    F08KDF (DGESDD)
        using bidiagonal Q R  iteration    F08KBF (DGESVD)
Solve generalized Sylvester equation:    
    complex matrices    F08YVF (ZTGSYL)
    real matrices    F08YHF (DTGSYL)
Solve reduced form of Sylvester matrix equation:    
    complex matrices    F08QVF (ZTRSYL)
    real matrices    F08QHF (DTRSYL)
Split Cholesky factorization:    
    complex Hermitian positive-definite band matrix    F08UTF (ZPBSTF)
    real symmetric positive-definite band matrix    F08UFF (DPBSTF)

F11 – Large Scale Linear Systems

Apply iterative refinement to the solution and compute error estimates, after factorizing the matrix of coefficients,    
    real sparse nonsymmetric matrix in CCS format    F11MHF
Basic routines for real sparse nonsymmetric linear systems    
    Matrix-matrix multiplier for real sparse nonsymmetric matrices in CCS format    F11MKF
Basic routines for complex Hermitian linear systems,    
    diagnostic routine    F11GTF
    setup routine    F11GRF
Basic routines for complex non-Hermitian linear systems,    
    diagnostic routine    F11BTF
    reverse communication RGMRES, CGS, Bi-CGSTAB ()  or TFQMR solver routine    F11BSF
    setup routine    F11BRF
Basic routines for real nonsymmetric linear systems,    
    diagnostic routine    F11BFF
    reverse communication RGMRES, CGS, Bi-CGSTAB ()  or TFQMR solver routine    F11BEF
    setup routine    F11BDF
Basic routines for real symmetric linear systems,    
    diagnostic routine    F11GFF
    reverse communication CG or SYMMLQ solver    F11GEF
    setup routine    F11GDF
Black Box routines for complex Hermitian linear systems,    
    CG or SYMMLQ solver    
        with incomplete Cholesky preconditioning    F11JQF
        with no preconditioning, Jacobi or SSOR preconditioning    F11JSF
Black Box routines for complex non-Hermitian linear systems,    
    RGMRES, CGS, Bi-CGSTAB ()  or TFQMR solver    
        with incomplete L U  preconditioning    F11DQF
        with no preconditioning, Jacobi, or SSOR preconditioning    F11DSF
Black Box routines for real nonsymmetric linear systems,    
    RGMRES, CGS, Bi-CGSTAB ()  or TFQMR solver    
        with incomplete L U  preconditioning    F11DCF
        with no preconditioning, Jacobi, or SSOR preconditioning    F11DEF
Black Box routines for real symmetric linear systems,    
    CG or SYMMLQ solver    
        with incomplete Cholesky preconditioning    F11JCF
        with no preconditioning, Jacobi, or SSOR preconditioning    F11JEF
Compute a norm or the element of largest absolute value,    
    real sparse nonsymmetric matrix in CCS format    F11MLF
Condition number estimation, after factorizing the matrix of coefficients,    
    real sparse nonsymmetric matrix in CCS format    F11MGF
L U  factorization,    
    diagnostic routine,    
        real sparse nonsymmetric matrix in CCS format    F11MMF
    real sparse nonsymmetric matrix in CCS format    F11MEF
    setup routine,    
        real sparse nonsymmetric matrices in CCS format    F11MDF
matrix-vector multiplier for complex Hermitian matrices in SCS format    F11XSF
reverse communication CG or SYMMLQ solver routine    F11GSF
Solution of simultaneous linear equations, after factorizing the matrix of coefficients,    
    real sparse nonsymmetric matrix in CCS format    F11MFF
Utility routine for complex Hermitian linear systems,    
    incomplete Cholesky factorization    F11JNF
    solver for linear systems involving preconditioning matrix from F11JNF    F11JPF
    solver for linear systems involving SSOR preconditioning matrix    F11JRF
    sort routine for complex Hermitian matrices in SCS format    F11ZPF
Utility routine for complex non-Hermitian linear systems,    
    incomplete L U  factorization    F11DNF
    matrix-vector multiplier for complex non-Hermitian matrices in CS format    F11XNF
    solver for linear systems involving iterated Jacobi method    F11DXF
    solver for linear systems involving preconditioning matrix from F11DNF    F11DPF
    solver for linear systems involving SSOR preconditioning matrix    F11DRF
    sort routine for complex non-Hermitian matrices in CS format    F11ZNF
Utility routine for real nonsymmetric linear systems,    
    incomplete L U  factorization    F11DAF
    matrix-vector multiplier for real nonsymmetric matrices in CS format    F11XAF
    solver for linear systems involving iterated Jacobi method    F11DKF
    solver for linear systems involving preconditioning matrix from F11DAF    F11DBF
    solver for linear systems involving SSOR preconditioning matrix    F11DDF
    sort routine for real nonsymmetric matrices in CS format    F11ZAF
Utility routine for real symmetric linear systems,    
    incomplete Cholesky factorization    F11JAF
    matrix-vector multiplier for real symmetric matrices in SCS format    F11XEF
    solver for linear systems involving preconditioning matrix from F11JAF    F11JBF
    solver for linear systems involving SSOR preconditioning matrix    F11JDF
    sort routine for real symmetric matrices in SCS format    F11ZBF

F12 – Large Scale Eigenproblems

Standard or generalized eigenvalue problems for complex matrices:    
    general matrices,    
        initialize problem and method    F12ANF
        option setting    F12ARF
        reverse communication implicitly restarted Arnoldi method    F12APF
        reverse communication monitoring    F12ASF
        selected eigenvalues, eigenvectors and/or Schur vectors of original problem    F12AQF
Standard or generalized eigenvalue problems for real nonsymmetric matrices:    
    banded matrices,    
        initialize problem and method    F12AFF
        selected eigenvalues, eigenvectors and/or Schur vectors    F12AGF
    general matrices,    
        initialize problem and method    F12AAF
        option setting    F12ADF
        reverse communication implicitly restarted Arnoldi method    F12ABF
        reverse communication monitoring    F12AEF
        selected eigenvalues, eigenvectors and/or Schur vectors of original problem    F12ACF
Standard or generalized eigenvalue problems for real symmetric matrices:    
    banded matrices,    
        initialize problem and method    F12FFF
        option setting    F12FDF
        selected eigenvalues, eigenvectors and/or Schur vectors    F12FGF
    general matrices,    
        initialize problem and method    F12FAF
        reverse communication implicitly restarted Arnoldi(Lanczos) method    F12FBF
        reverse communication monitoring    F12FEF
        selected eigenvalues and eigenvectors and/or Schur vectors of original problem    F12FCF

G01 – Simple Calculations on Statistical Data

Descriptive statistics / Exploratory analysis:    
    plots:    
        box and whisker    G01ASF
        histogram    G01AJF
        Normal probability ( Q - Q ) plot    G01AHF
        scatter plot    G01AGF
        stem and leaf    G01ARF
    summaries:    
        frequency / contigency table,    
            one variable    G01AEF
            two variables, with χ2  and Fisher's exact test    G01AFF
        mean, variance, skewness, kurtosis (one variable),    
            from frequency table    G01ADF
        mean, variance, sums of squares and products (two variables)    G01ABF
        median, hinges / quartiles, minimum, maximum    G01ALF
Descriptive statistics / Exporatory analysis:    
    summaries:    
        mean, variance, skewness, kurtosis (one variable),    
            from raw data    G01AAF
Distributions:    
    Beta:    
        central:    
            deviates    G01FEF
            probabilities and probability density function    G01EEF
        non-central:    
            probabilities    G01GEF
    Binomial:    
        distribution function    G01BJF
    Durbin–Watson statistic:    
        probabilities    G01EPF
    Energy loss distributions:    
        Landau:    
            density    G01MTF
            derivative of density    G01RTF
            distribution    G01ETF
            first moment    G01PTF
            inverse distribution    G01FTF
            second moment    G01QTF
        Vavilov:    
            density    G01MUF
            distribution    G01EUF
            initialization    G01ZUF
     F :    
        central:    
            deviates    G01FDF
            probabilities    G01EDF
        non-central:    
            probabilities    G01GDF
    Gamma:    
        deviates    G01FFF
        probabilities    G01EFF
    Hypergeometeric:    
        distribution function    G01BLF
    Kolomogorov–Smirnov:    
        probabilities:    
            one-sample    G01EYF
            two-sample    G01EZF
    Normal:    
        bivariate:    
            probabilities    G01HAF
        multivariate:    
            probabilities    G01HBF
            quadratic forms:    
                cumulants and moments    G01NAF
                moments of ratios    G01NBF
        univariate:    
            deviates    G01FAF
            probabilities    G01EAF
            reciprocal of Mill's Ratio    G01MBF
            Shapiro and Wilks test for Normality    G01DDF
    Poisson:    
        distribution function    G01BKF
    Student's t :    
        central:    
            deviates    G01FBF
            probabilities    G01EBF
        non-central:    
            probabilities    G01GBF
    Studentized range statistic:    
        deviates    G01FMF
        probabilities    G01EMF
    von Mises:    
        probabilities    G01ERF
     χ2 :    
        central:    
            deviates    G01FCF
            probabilities    G01ECF
            probability of linear combination    G01JDF
        non-central:    
            probabilities    G01GCF
            probability of linear combination    G01JCF
Scores:    
    Normal scores, ranks or exponential (Savage) scores    G01DHF
    Normal scores:    
        accurate    G01DAF
        approximate    G01DBF
        variance-covariance matrix    G01DCF

G02 – Correlation and Regression Analysis

Correlation-like coefficients:    
    all variables    
        casewise treatment of missing values    G02BEF
        no missing values    G02BDF
        pairwise treatment of missing values    G02BFF
    subset of variables    
        casewise treatment of missing values    G02BLF
        no missing values    G02BKF
        pairwise treatment of missing values    G02BMF
Generalized linear models:    
    Binomial errors    G02GBF
    computes estimable function    G02GNF
    Gamma errors    G02GDF
    Normal errors    G02GAF
    Poisson errors    G02GCF
    transform model parameters    G02GKF
Linear mixed effects regression:    
    via maximum likelihood (ML)    G02JBF
    via restricted maximum likelihood (REML)    G02JAF
Multiple linear regression/General linear model:    
    add independent variable to model    G02DEF
    add/delete observation from model    G02DCF
    computes estimable function    G02DNF
    delete independent variable from model    G02DFF
    general linear regression model    G02DAF
    regression for new dependent variable    G02DGF
    regression parameters from updated model    G02DDF
    transform model parameters    G02DKF
Multiple linear regression:    
    from correlation coefficients    G02CGF
    from correlation-like coefficients    G02CHF
Non-parametric rank correlation (Kendall and/or Spearman):    
    missing values    
        casewise treatment of missing values    
            overwriting input data    G02BPF
            preserving input data    G02BRF
        pairwise treatment of missing values    G02BSF
    no missing values    
        overwriting input data    G02BNF
        preserving input data    G02BQF
Product moment correlation:    
    correlation coefficients, all variables    
        casewise treatment of missing values    G02BBF
        no missing values    G02BAF
        pairwise treatment of missing values    G02BCF
    correlation coefficients, subset of variables    
        casewise treatment of missing values    G02BHF
        no missing values    G02BGF
        pairwise treatment of missing values    G02BJF
    correlation matrix    
        compute correlation and covariance matrices    G02BXF
        compute from sum of squares matrix    G02BWF
        compute partial correlation and covariance matrices    G02BYF
    sum of squares matrix    
        compute    G02BUF
        update    G02BTF
Residuals:    
    Durbin–Watson test    G02FCF
    standardized residuals and influence statistics    G02FAF
Robust correlation:    
    Huber's method    G02HKF
    user-supplied weight function only    G02HMF
    user-supplied weight function plus derivatives    G02HLF
Robust regression:    
    compute weights for use with G02HDF    G02HBF
    standard M -estimates    G02HAF
    user supplies weight functions    G02HDF
    variance-covariance matrix following G02HDF    G02HFF
Selecting regression model:    
    all possible regressions    G02EAF
    forward selection    G02EEF
     R2  and Cp  statistics    G02ECF
Service routines:    
    for multiple linear regression    
        reorder elements from vectors and matrices    G02CFF
        select elements from vectors and matrices    G02CEF
Simple linear regression:    
    simple linear regression    G02CAF
    simple linear regression,    
        no intercept    G02CBF
        no intercept with missing values    G02CDF
        with missing values    G02CCF
Stepwise linear regression:    
    Clarke's sweep algorithm    G02EFF

G03 – Multivariate Methods

Canonical correlation analysis    G03ADF
Canonical variate analysis    G03ACF
Cluster Analysis:    
    compute distance matrix    G03EAF
    construct clusters following G03ECF    G03EJF
    construct dendrogram following G03ECF    G03EHF
    hierarchical    G03ECF
    K-means    G03EFF
Discriminant Analysis:    
    allocation of observations to groups, following G03DAF    G03DCF
    Mahalanobis squared distances, following G03DAF    G03DBF
    test for equality of within-group covariance matrices    G03DAF
Factor Analysis:    
     maximum likelihood estimates of parameters    G03CAF
    factor score coefficients, following G03CAF    G03CCF
Principal component analysis    G03AAF
Rotations:    
    orthogonal rotations for loading matrix    G03BAF
    Procustes rotations    G03BCF
Scaling Methods:    
    multidimensional scaling    G03FCF
    principal co-ordinate analysis    G03FAF
Standardize values of a data matrix    G03ZAF

G04 – Analysis of Variance

Analysis of variance for:    
    complete factorial design    G04CAF
    general block design or completely randomized design    G04BBF
    general block design or completely randomized design,    
        row and column design    G04BCF
    two-way hierarchical classification, subgroups of unequal size    G04AGF
General linear model:    
    generate dummy variables and orthogonal polynomials    G04EAF
Inferences on means:    
    simultaneous confidence intervals    G04DBF
    sum of squares for contrast between means    G04DAF

G05 – Random Number Generators

Generating samples, matrices and tables,    
    random correlation matrix    G05QBF
    random orthogonal matrix    G05QAF
    random permutation of an integer vector    G05NAF
    random sample from an integer vector    G05NBF
    random table    G05QDF
Generation of time series,    
    asymmetric GARCH Type II    G05HLF
    asymmetric GJR GARCH    G05HMF
    EGARCH    G05HNF
    symmetric GARCH or asymmetric GARCH Type I    G05HKF
    univariate ARMA model,    
        Normal errors    G05PAF
    vector ARMA model,    
        Normal errors    G05PCF
Pseudo-random numbers,    
    array of variates from multivariate distributions,    
        multinomial distribution    G05MRF
        Normal distribution    G05LXF
        Student's t  distribution    G05LYF
    Copulas    
        Gaussian Copula    G05RAF
        Student's t  Copula    G05RBF
    initialize generator,    
        nonrepeatable sequence    G05KCF
        repeatable sequence    G05KBF
    single variate from multivariate distributions,    
        Normal distribution    G05LZF
    single variate, from a univariate disribution    
        logical value .TRUE. or .FALSE.    G05KEF
        real number from the continuous uniform distribution    G05KAF
    vector of variates from discrete univariate distributions,    
        binomial distribution    G05MJF
        geometric distribution    G05MBF
        hypergeometric distribution    G05MLF
        logarithmic distribution    G05MDF
        negative binomial distribution    G05MCF
        Poisson distribution    G05MKF
        uniform distribution    G05MAF
        user-supplied distribution    G05MZF
        variate array from discrete distributions with array of parameters,    
            Poisson distribution with varying mean    G05MEF
    vectors of variates from continuous univariate distributions,    
        beta distribution    G05LEF
        Cauchy distribution    G05LLF
        chi-square distribution    G05LCF
        exponential mix distribution    G05LQF
         F -distribution    G05LDF
        gamma distribution    G05LFF
        logistic distribution    G05LNF
        lognormal distribution    G05LKF
        negative exponential distribution    G05LJF
        Normal distribution    G05LAF
        Student's t -distribution    G05LBF
        triangular distribution    G05LHF
        uniform distribution    G05LGF
        von Mises distribution    G05LPF
        Weibull distribution    G05LMF
Quasi-random numbers,    
    array of variates from univariate distributions,    
        Faure generator    G05YDF
        Log normal distribution    G05YKF
        Neiderreiter generator    G05YHF
        Normal distribution    G05YJF
        Sobol generator    G05YFF
    initialize generator,    
        Faure generators    G05YCF
        Neiderreiter generators    G05YGF
        Sobol generators    G05YEF

G07 – Univariate Estimation

2 sample t -test    G07CAF
Confidence intervals for parameters:    
    binomial distribution    G07AAF
    Poisson distribution    G07ABF
Maximum likelihood estimation of parameters:    
    Normal distribution, grouped and/or censored data    G07BBF
    Weibull distribution    G07BEF
Robust estimation:    
    confidence intervals:    
        one sample    G07EAF
        two samples    G07EBF
     M -estimates for location and scale parameters:    
        standard weight functions    G07DBF
        trimmed and winsorized means and estimates of their variance    G07DDF
        user-defined weight functions    G07DCF
    median, median absolute deviation and robust standard deviation    G07DAF

G08 – Nonparametric Statistics

Regression using ranks:    
    right-censored data    G08RBF
    uncensored data    G08RAF
Tests of association and correlation:    
    Kendall's coefficient of concordance    G08DAF
Tests of dispersion:    
    Mood's and David's tests on two samples of unequal size    G08BAF
Tests of fit:    
    Kolmogorov–Smirnov one-sample distribution test:    
        for a user-supplied distribution    G08CCF
        for standard distributions    G08CBF
    Kolmogorov–Smirnov two-sample distribution test    G08CDF
     χ2  goodness of fit test    G08CGF
Tests of location:    
    Cochran Q test on cross-classified binary data    G08ALF
    Exact probabilities for Mann–Whitney U  statistic:    
        no ties in pooled sample    G08AJF
        ties in pooled sample    G08AKF
    Friedman two-way analysis of variance on k  matched samples    G08AEF
    Kruskal–Wallis one-way analysis of variance on k  samples of unequal size    G08AFF
    Mann–Whitney U  test on two samples of possibly unequal size    G08AHF
    Median test on two samples of unequal size    G08ACF
    Sign test on two paired samples    G08AAF
    Wilcoxon one sample signed rank test    G08AGF
Tests of randomness:    
    Gaps test    G08EDF
    Pairs (serial) test    G08EBF
    Runs up or runs down test    G08EAF
    Triplets test    G08ECF

G10 – Smoothing in Statistics

Compute smoothed data sequence:    
    running median smoothers    G10CAF
Fit cubic smoothing spline:    
    smoothing parameter estimated    G10ACF
    smoothing parameter given    G10ABF
Kernel density estimate:    
    Gaussian kernel    G10BAF
Reorder data to give ordered distinct observations    G10ZAF

G11 – Contingency Table Analysis

Conditional logistic model for stratified data    G11CAF
Frequency count for G11SAF    G11SBF
Latent variable model for dichotomous data    G11SAF
Multiway tables from set of classification factors:    
    marginal table from G11BAF or G11BBF    G11BCF
    using given percentile/quantile    G11BBF
    using selected statistic    G11BAF
χ2  statistics for two-way contingency table    G11AAF

G12 – Survival Analysis

Cox's proportional hazard model:    
    create the risk sets    G12ZAF
    parameter estimates and other statistics    G12BAF
Survivor function    G12AAF

G13 – Time Series Analysis

ARMA modelling,    
    ACF    G13ABF
    diagnostic checking    G13ASF
    differencing    G13AAF
    estimation (comprehensive)    G13AEF
    estimation (easy-to-use)    G13AFF
    forecasting from fully specified model    G13AJF
    forecasting from state set    G13AHF
    mean/range    G13AUF
    PACF    G13ACF
    preliminary estimation    G13ADF
    update state set    G13AGF
Bivariate spectral analysis,    
    Bartlett, Tukey, Parzen windows    G13CCF
    direct smoothing    G13CDF
    other representations    G13CEF
    other representations    G13CFF
    other representations    G13CGF
GARCH,    
    asymmetric ARCH/GARCH,    
        fitting    G13FAF
        fitting    G13FCF
        fitting    G13FEF
        forecasting    G13FBF
        forecasting    G13FDF
        forecasting    G13FFF
    EGARCH,    
        fitting    G13FGF
        forecasting    G13FHF
    symmetric ARCH/GARCH,    
        fitting    G13FAF
        forecasting    G13FBF
Kalman filter,    
    Time invariant,    
        square root covariance    G13EBF
    Time varying,    
        square root covariance    G13EAF
Transfer function modelling,    
    cross-correlations    G13BCF
    filtering    G13BBF
    fitting    G13BEF
    forecasting from fully specified model    G13BJF
    forecasting from state set    G13BHF
    pre-whitening    G13BAF
    preliminary estimation    G13BDF
    update state set    G13BGF
Univariate spectral analysis,    
    Bartlett, Tukey, Parzen windows    G13CAF
    direct smoothing    G13CBF
Vector ARMA,    
    cross-correlations    G13DMF
    diagnostic checks    G13DSF
    differencing    G13DLF
    fitting    G13DCF
    forecasting    G13DJF
    partial-correlations/autoregressions    G13DBF
    partial-correlations/autoregressions    G13DNF
    partial-correlations/autoregressions    G13DPF
    update forecast    G13DKF
    zeros of ARIMA operator    G13DXF

H – Operations Research

Convert data to arrays for use with H02BBF or E04MFF/E04MFA    H02BUF
Integer programming problem (dense):    
    print solution with specified names    H02BVF
    solve LP problem using branch and bound method    H02BBF
    solve QP problem using branch and bound method    H02CBF
    supply further information on the solution obtained from H02BBF    H02BZF
Integer programming problem (sparse):    
    solve LP or QP problem using branch and bound method    H02CEF
MPSX data input, defining IP or LP problem:    
    interpret data, optimize and print solution    H02BFF
Read optional parameter values from external file for H02CBF    H02CCF
Read optional parameter values from external file for H02CEF    H02CFF
Shortest path, through directed or undirected network    H03ADF
Supply optional parameter values to H02CBF    H02CDF
Supply optional parameter values to H02CEF    H02CGF
Transportation problem    H03ABF

M01 – Sorting

Ranking:    
    arbitrary data    M01DZF
    columns of a matrix,    
        integer numbers    M01DKF
         real numbers    M01DJF
    rows of a matrix,    
        integer numbers    M01DFF
         real numbers    M01DEF
    vector,    
        character data    M01DCF
        integer numbers    M01DBF
         real numbers    M01DAF
Rearranging (according to pre-determined ranks):    
    vector,    
        character data    M01ECF
         complex numbers    M01EDF
        integer numbers    M01EBF
         real numbers    M01EAF
Service routines:    
    check validity of a permutation    M01ZBF
    decompose a permutation into cycles    M01ZCF
    invert a permutation (ranks to indices or vice versa)    M01ZAF
Sorting (i.e., rearranging into sorted order):    
    quick sort,    
        vector,    
             real numbers    M01CAF
    vector,    
        character data    M01CCF
        integer numbers    M01CBF

P01 – Error Trapping

Return value of error indicator/terminate with error message    P01ABF

S – Approximations of Special Functions

Airy function,    
     Ai  or Ai , complex argument, optionally scaled    S17DGF
     Ai , real argument    S17AGF
     Ai , real argument    S17AJF
     Bi  or Bi , complex argument, optionally scaled    S17DHF
     Bi , real argument    S17AHF
     Bi , real argument    S17AKF
Arccos,    
    inverse circular cosine    S09ABF
Arccosh,    
    inverse hyperbolic cosine    S11ACF
Arcsin,    
    inverse circular sine    S09AAF
Arcsinh,    
    inverse hyperbolic sine    S11ABF
Arctanh,    
    inverse hyperbolic tangent    S11AAF
Bessel function,    
     J0 , real argument    S17AEF
     J1 , real argument    S17AFF
     J α ± n (z) , real argument    S18GKF
     Jν , complex argument, optionally scaled    S17DEF
     Y0 , real argument    S17ACF
     Y1 , real argument    S17ADF
     Yν , complex argument, optionally scaled    S17DCF
Complement of the Cumulative Normal distribution    S15ACF
Complement of the Error function,    
    complex argument, scaled    S15DDF
    real argument    S15ADF
Cosine Integral    S13ACF
Cosine,    
    hyperbolic    S10ACF
Cumulative Normal distribution function    S15ABF
Dawson's Integral    S15AFF
Digamma function, scaled    S14ADF
Elliptic functions, Jacobian, sn, cn, dn    
    complex argument    S21CBF
    real argument    S21CAF
Elliptic integral,    
    general,    
        of 2nd kind, F (z, k ,a,b)      S21DAF
    symmetrised,    
        degenerate of 1st kind, RC      S21BAF
        of 1st kind, RF      S21BBF
        of 2nd kind, RD      S21BCF
        of 3rd kind, RJ      S21BDF
Erf,    
    real argument    S15AEF
Erfc,    
    complex argument, scaled    S15DDF
    real argument    S15ADF
Error function,    
    real argument    S15AEF
Exponential Integral    S13AAF
Exponential,    
    complex    S01EAF
Fresnel Integral,    
     C      S20ADF
     S      S20ACF
Gamma function    S14AAF
Gamma function,    
    incomplete    S14BAF
Generalized Factorial function    S14AAF
Hankel function Hν(1)  or Hν(2) ,    
    complex argument, optionally scaled    S17DLF
Jacobian elliptic functions, sn, cn, dn,    
    complex argument    S21CBF
    real argument    S21CAF
Jacobian theta functions θk (x,q) ,    
    real argument    S21CCF
Kelvin function,    
     berx      S19AAF
     beix      S19ABF
     kerx      S19ACF
     keix      S19ADF
Legendre functions of 1st kind Pnm (x) , Pnm (x)      S22AAF
Logarithm of 1 + x      S01BAF
Logarithm of Gamma function,    
    complex    S14AGF
    real    S14ABF
Modified Bessel function(s),    
     I0 , real argument    S18AEF
     I1 , real argument    S18AFF
     Iν , complex argument, optionally scaled    S18DEF
     K0 , real argument    S18ACF
     K1 , real argument    S18ADF
     Kν , complex argument, optionally scaled    S18DCF
Polygamma function,    
     ψ(n) (x) , real x      S14AEF
     ψ(n) (z) , complex z      S14AFF
Psi function    S14ACF
Psi function and derivatives, scaled    S14ADF
Scaled modified Bessel function(s),    
     e - |x| I0 (x) , real argument    S18CEF
     e - |x| I1 (x) , real argument    S18CFF
     ex K0 (x) , real argument    S18CCF
     ex K1 (x) , real argument    S18CDF
Sine Integral    S13ADF
Sine,    
    hyperbolic    S10ABF
Tangent,    
    circular    S07AAF
    hyperbolic    S10AAF
Trigamma function, scaled    S14ADF
Zeros of Bessel functions Jα (x) , Jα (x) , Yα (x) , Yα (x)      S17ALF

X01 – Mathematical Constants

Euler's constant, γ      X01ABF
π      X01AAF

X02 – Machine Constants

Derived parameters of model of floating-point arithmetic:    
    largest positive model number    X02ALF
    machine precision    X02AJF
    safe range    X02AMF
    safe range of complex floating point arithmetic    X02ANF
    smallest positive model number    X02AKF
Largest permissible argument for SIN and COS    X02AHF
Largest representable integer    X02BBF
Maximum number of decimal digits that can be represented    X02BEF
Parameters of model of floating-point arithmetic:    
    b    X02BHF
    emax    X02BLF
    emin    X02BKF
    p    X02BJF
    ROUNDS    X02DJF
Switch for taking precautions to avoid underflow    X02DAF

X03 – Inner Products

Complex inner product added to initial value, basic/additional precision    X03ABF
Real inner product added to initial value, basic/additional precision    X03AAF

X04 – Input/Output Utilities

Accessing external formatted file:    
    reading a record    X04BBF
    writing a record    X04BAF
Accessing unit number:    
    of advisory message unit    X04ABF
    of error message unit    X04AAF
Disconnecting an external file    X04ADF
Connecting an external file    X04ACF
Printing matrices:    
    Comprehensive routines:    
        general complex matrix    X04DBF
        general integer matrix    X04EBF
        general real matrix    X04CBF
        packed complex band matrix    X04DFF
        packed complex triangular matrix    X04DDF
        packed real band matrix    X04CFF
        packed real triangular matrix    X04CDF
    Easy-to-use routines:    
        general complex matrix    X04DAF
        general integer matrix    X04EAF
        general real matrix    X04CAF
        packed complex band matrix    X04DEF
        packed complex triangular matrix    X04DCF
        packed real band matrix    X04CEF
        packed real triangular matrix    X04CCF

X05 – Date and Time Utilities

Compare two character strings representing date and time    X05ACF
Convert array of integers returned by X05AAF to character string    X05ABF
Return date and time as an array of integers    X05AAF
Return the CPU time    X05BAF

NAG Fortran Library

© The Numerical Algorithms Group Ltd, Oxford, UK. 2006